Hensel's Lemma

Complete rings satisfy a nice analytic property, similar to Newton's method, called Hensel's Lemma, which we will state but not prove, and then use to work through some examples.

Motivation: In the p-adics, congruences are approximations: if $a \equiv b \bmod p^{n}$, then they agree in their first n entries. The higher the n, the "closer" they are.
e.g. $\quad 5 \equiv 1^{2}(\bmod 2), \quad 5=1^{2}\left(\bmod 2^{2}\right)$, but $5 \not \equiv 1^{2}\left(\bmod 2^{3}\right)$. 5 is not a square at all $\bmod 8$, and thus is not a square in π_{2}, even though we can "approximate" its root to a certain order.

Consider $7 \in \pi_{3}$. Notice:

$$
\begin{aligned}
& 7 \equiv 1^{2}(\bmod 3) \\
& 7 \equiv(1+3)^{2} \quad\left(\bmod 3^{2}\right) \\
& 7 \equiv\left(1+3+3^{2}\right)^{2}\left(\bmod 3^{2}\right)
\end{aligned}
$$

In this case, we can continue indefinitely, so 7 is a perfect square in π_{p}. In other words, $x^{2}-7$ has a root.

Hensel's lemma tells us when the root of a polynomial mod
lifts to a wot in π_{p}.

Hensel's Lemma, version 1: If $f(x) \in \pi_{p}[x]$ and $a \in \pi_{p}$ satisfy
(1.) $f(a) \equiv 0(\bmod p)$, and
(2.) $f^{\prime}(a) \not \equiv 0(\bmod p)$

Then there is a unique $b \in \pi_{p}$ such that $f(b)=0$ and $a \equiv b(\bmod p)$.

Ex: $\quad f(x)=x^{2}-\alpha$ in $\pi_{2}[x]$ fails the second hypothesis $\forall \alpha$:

$$
f^{\prime}(x)=2 x \equiv 0(\bmod p) .
$$

So we can't use Hensel's Lemma to find square roots in π_{2}.

However, in π_{3}, if $f(x)=x^{2}-7$, then $f(1) \equiv 0(\bmod 3)$, and $f^{\prime}(1)=2 \neq 0(\bmod 3)$. Thus, 1 lifts to a root in π_{3}.

Also, $f(2)=4-7 \equiv 0(\bmod 3)$ and $f^{\prime}(2)=4 \neq 0(\bmod 3)$, so 2 lifts to a root as well.

More generally, we can ask: which elements $c \in \pi_{p}$ are perfect squares?

We can write $c=p^{n} b$, where $p \neq b$ and $n \geq 0$. Then c is a
perfect square iff h is even and b is a square.

Consider $f(x)=x^{2}-b \in \pi_{p}[x]$.

If $p \neq 2$, suppose b is a square $\bmod p$, say

$$
b \equiv a^{2}(\bmod p),
$$

Then let $\bar{a}, \bar{b} \in \pi / p \pi$ and we get $\bar{a}^{2}=\bar{b} . \quad \bar{b} \neq 0$, so $\bar{a} \neq 0$, so $\overline{2 a} \neq 0 \Rightarrow f^{\prime}(a) \neq 0(\bmod p)$. Thus, Hensel's lemma implies \bar{a} lifts to a root of f in π_{p}.

Thus, we conclude that $c=p^{n} b$ has a not in $\lambda_{p}(p \neq 2)$ of $h \geq 0$ is even and b is a square mod p.

For the $p=2$ case, we need a more general version of Hensel's lemma.

Hensel's Lemma, version 2: Let R be a ring that is complete with respect to an ideal I. Let $f(x) \in R[x]$ sit. $f(a) \in f^{\prime}(a)^{2} I$ for some $a \in R$.

Then there is a root b of f "hear a " in the sense that $f(b)=0$ and $b-a \in f^{\prime}(a) I$.

If $f^{\prime}(a)$ is a NZD in R, then b is unique.

Ex: Back to $\pi_{2}, \quad c=2^{n} b, b$ not divisible by 2 .

If b is a square, then

$$
b=(1+2 k)^{2}=1+4 k+4 k^{2}=1+4 \underbrace{k(1+k)}_{\text {even }} \Rightarrow b \equiv 1(\bmod 8) \text {. }
$$

Conversely, assume $b \equiv 1(\bmod 8)$. Then set $f(x)=x^{2}-b$. We want to show f has a root.
π_{2} is complete w.v.t. (2), so $f^{\prime}(a)^{2} I=4 a^{2}(2)=\left(8 a^{2}\right)$.

Set $a=1$. Then $f(1)=1-b \equiv 0(\bmod 8)$, so

$$
f(1) \in f^{\prime}(1)^{2} I=(8)
$$

Thus, Hensel's Lemma says there's some α sot.

$$
\alpha^{2}=b \text { and } \alpha-1 \in f^{\prime}(1) I=(4)
$$

Thus, we con summarize our findings as follows:

Cor: let $c \in \mathbb{\pi}_{p}$ and write $c=p^{n} b, b$ not divisible by $p, n \geq 0$. Then c is a perfect square if and only if either
(1.) $p=2, n$ even, and $b \equiv((\bmod 8)$, or
(2.) $p \neq 2, n$ even, and $b \equiv a^{2}(\bmod p)$ for some a.

