Complete rings satisfy a nice analytic property, similar to Newton's method, called Hensel's Lemma, which we will state but not prove, and then use to work through some examples.

Motivation: In the p-adics, congruences are approximations: if a=b mod pⁿ, then they agree in their first n entries. The higher the n, the closer "they are.

e.g.
$$5 \equiv |^2 \pmod{2}$$
, $5 \equiv |^2 \pmod{2^2}$, but $5 \neq |^2 \pmod{2^3}$.
5 is not a square at all mod 8, and thus is not a
square in \mathbb{Z}_2 , even though we can "approximate" its root
to a certain order.

Consider 7673. Notice:

$$7 = |^{2} \pmod{3}$$

$$7 = (1+3)^{2} \pmod{3^{2}}$$

$$7 = (1+3+3^{2})^{2} \pmod{3^{2}}$$

In this case, we can continue indefinitely, so 7 is a perfect square in \mathbb{Z}_p . In other words, $\chi^2 - 7$ has a bot.

Hensel's lemma tells us when the root of a polynomial modp

lifts to a wot in \mathcal{Z}_{p} .

Hensel's lemma, version 1: If
$$f(x) \in \mathbb{Z}_p(x)$$
 and $a \in \mathbb{Z}_p$
satisfy
(i) $f(a) \equiv 0 \pmod{p}$, and
(2) $f'(a) \not\equiv 0 \pmod{p}$

Then there is a unique be \mathbb{Z}_p such that f(b)=0 and $a \equiv b \pmod{p}$.

$$F_{X}: f(x) = x^{2} - \alpha \text{ in } \overline{\alpha}_{2}[x] \text{ fails the second hypothesis } \forall \alpha:$$

$$f'(x) = 2x \equiv O \pmod{p}.$$

so we can't use Hensel's Lemma to find square roots in R2.

However, in
$$\mathbb{Z}_3$$
, if $f(\pi) = \pi^2 - 7$, then $f(i) \equiv 0 \pmod{3}$, and $f'(i) \equiv 2 \not\equiv 0 \pmod{3}$. Thus, I lifts to a root in \mathbb{Z}_3 .

Also,
$$f(z) = 4 - 7 = 0$$
 (mod 3) and $f'(z) = 4 \neq 0$ (mod 3), so
2 lifts to a root as well.

More generally, we can ask: which elements $C \in \mathbb{Z}_p$ are perfect squares?

We can write c=pⁿb, where ptb and n≥0. Then c is a

perfect square iff h is even and b is a square.

Consider
$$f(x) = x^2 - b \in \mathbb{Z}_p[x]$$
,

If
$$p \neq 2$$
, suppose b is a square mod p, say
 $b \equiv a^2 \pmod{p}$,

Then let $\overline{a}, \overline{b} \in \mathbb{Z}/p\mathbb{Z}$ and we get $\overline{a}^2 = \overline{b}$. $\overline{b} \neq 0$, so $\overline{a} \neq 0$, so $\overline{2a} \neq 0 \Longrightarrow f(a) \notin 0 \pmod{p}$. Thus, Hensel's lemma implies \overline{a} lifts to a not of f in \mathbb{Z}_p .

Thus, we conclude that
$$c = p^{n}b$$
 has a not in \mathcal{R}_{p} ($p \neq 2$)
iff $h \ge 0$ is even and b is a square mod p.

For the p=2 case, we need a more general version of Hensel's lemma.

Hensel's lemma, version 2: let R be a ring that is complete with respect to an ideal I. let $f(\pi) \in R[\pi]$ s.t. $f(\alpha) \in f'(\alpha)^2 I$ for some $\alpha \in R$.

Then there is a root b of f "hear a" in the sense that f(b) = 0 and $b-a \in f'(a) I$.

If f'(a) is a NZD in R, then b is unique.

EX: Back to
$$\mathbb{R}_{2}$$
, $c = 2^{n}b$, b not divisible by 2.

If b is a square, then

$$b = (1+2k)^{2} = 1 + 4k + 4k^{2} = 1 + 4k(1+k) = b \equiv 1 \pmod{8}.$$
Conversely, assume $b \equiv 1 \pmod{8}$. Then set $f(\pi) = \pi^{2} - b$.

We want to show f has a root.

 π_2 is complete w.r.t. (2), so $f'(a)^2 I = 4a^2(2) = (8a^2)$

Set
$$a=1$$
. Then $f(1)=1-b \equiv 0 \pmod{8}$, so
 $f(1) \in f'(1)^2 T = (8)$.

Thus, Hensel's Lemma says there's some α s.t. $\alpha^2 = b$ and $\alpha - l \in f'(1) I = (4)$

Thus, we can summarize our findings as follows:

Cor: let
$$C \in \mathbb{Z}_p$$
 and write $C = p^n b$, b not divisible by $p, n \ge 0$.
Then C is a perfect square if and only if either
(i) $p = 2$, n even, and $b \equiv 1 \pmod{8}$, or
(2) $p \neq 2$, n even, and $b \equiv a^2 \pmod{p}$ for some a .